ETESP Background Paper

ANNUAL \& MONTHLY RAINFALL

(Update of December 2005)

CONTENTS

ANNUAL \& MONTHLY RAINFALL 3

1. Introduction 3
2. Monthly and Annual Rainfall 3
Table 1(a) Monthly Rainfall Data - 1999 3
Table 1(b) Monthly Rainfall Data Based on Long Term Data 4
Figure 1 Rainfall Distribution - monthly, average for project area 4
3. Rainfall Zones 5
Table 2 Rainfall Zones based on Long Term Precipitation 5
Figure 2 Long Term Precipitation by District (Kabupaten) 5
Figure 3 Districts (Kabupaten) in the Study and Long Term Precipitation 6
4. Use of Rainfall Data 6
APPENDIX 1 Original Data Manipulation Spreadsheet 7
Appendix 2 Updated Data Manipulation Spreadsheet 8

ANNUAL \& MONTHLY RAINFALL

1. Introduction

For the ETESP, Agriculture Component Inception Report the only rainfall data available were those quoted in Table 4.1 which contained monthly data for the year 1999 plus long term totals. The data sets were not all complete for all months or for all Kabupaten and a few "gaps" existed.

Accordingly, to try and establish a more complete data set, until such time as full meteorological data sets can hopefully be obtained, the data were manipulated to give monthly rainfall data based on the long term "total" rainfall for each Kabupaten. The hope being that by using the long term data the information just might be more reliable - but this cannot be guaranteed.

Also, in the Inception Report it was stated that rainfall was greater on the west coast than on the east - this statement, though basically accurate, did not supply much useful information. Accordingly the available data was again manipulated to try and establish "rainfall" zones which might prove useful in planning rehabilitation processes.

2. Monthly and Annual Rainfall

The original 1999 data plus the "manipulated" data sets are shown as Table 1.
Table 1(a) Monthly Rainfall Data - 1999

Kabupaten Code	8	16	7	15	12	1	9	10	11	5
Kabupaten Hame Month		$\begin{aligned} & \mathbb{2 0} \\ & \stackrel{y}{2} \\ & \stackrel{5}{0} \\ & 0 \end{aligned}$								
	mm									
Jan	72	242	242	384	216	40	195	195	330	246
Feb	139	180	94	159	313	75	327	97	91	387
March	114	240	299	299	254	55	126	122	85	497
Appril	78	140	215	286	138	65	163	123	38	170
May	74	87	307	221	280	121	85	130	-	166
June	34	61	33	33	155	70	57	69	7	129
July	51	155	147	147	206	107	30	76	-	211
Aug	92	314	314	291	185	186	123	70	-	270
Sept	107	202	202	202	488	110	333	99	-	287
Oct	41	416	416	416	210	141	140	171	-	285
Nov	83	273	273	273	98	135	98	204	-	
Dec	173	268	268	279	231	139	129	224	-	396
Total 1999	1057	2578	2809	2990	2774	1244	1807	1541	1318	3044
Long Term Total	1668	2649	3149	3360	3303	1127	1889	1613	ND	2222

$\begin{array}{ll}\text { Source: } & \text { ETESP Inception report October } 2005 \\ & \text { From Land Rehabilitation and Environment Sub-Section }\end{array}$
Recent local advice is that the figure for Simeulue should be about 3,000 and not the above quoted 1127 or 1244 mm .

Table 1(b) Monthly Rainfall Data Based on Long Term Data

Code Name	8	16	7	15	12	1	9		10		11		5		Overall			
							$\frac{\text { U }}{\frac{0}{1}}$											
	mm \%	mm	\%	mm	\%	mm	\%	mm	\%	\%	mm							
Jan	1147	$249 \quad 9$	271 9	$432 \quad 13$	2578	963	204	11	199	12	123	9	180	8	10	212		
Feb	21913	1857	1053	179 5	37311	1816	342	18	99	6	126	9	282	13	9	209		
Mar	$180 \quad 11$	247 9	33511	33610	3029	133 4	132	7	125	8	129	9	363	16	9	228		
Apr	123 7	1445	2418	$321 \quad 10$	1645	1575	170	9	126	8	96	7	124	6	7	167		
May	117	893	34411	2487	33310	29210	89	5	133	8	101	7	121	5	7	187		
Jun	$54 \quad 3$	$63 \quad 2$	37	371	1856	1696	60	3	70	4	55	4	94	4	3	82		
Jul	805	1596	165 5	165 5	2457	258 9	31	2	78	5	76	6	154	7	6	141		
Aug	1459	32312	$352 \quad 11$	$327 \quad 10$	2207	$449 \quad 15$	129	7	71	4	127	9	197	9	9	234		
Sep	16910	2088	2267	227 7	58118	2659	348	18	101	6	140	10	209	9	10	248		
Oct	$65 \quad 4$	42716	46615	46714	2508	$340 \quad 11$	146	8	175	11	145	11	208	9	11	269		
Nov	1318	$281 \quad 11$	30610	3079	1174	32611	103	5	208	13	107	8	146	7	8	203		
Dec	27316	$275 \quad 10$	$300 \quad 10$	3149	2758	33511	135	7	229	14	141	10	143	6	11	242		
Total - LT	1668	2649	3149	3360	3303	3000	1889		1613		1365		2222		Avrg	2422		
Check	1668	2649	3149	3360	3303	3000	1889		1613		1365		2222		Avrg	2422		

Source:
Developed by manipulating data of 1999 rainfall to get $\%$ of 1999 per month then
applying percentages to Long Term Total Rainfall
Total for Bireuen changed from $1100+$ to 3000 mm on local advice
The full spreadsheet showing the percentages per month etc is shown as Appendix 1 and rainfall distributions graphs (block diagrams) are shown in Appendix B. The overall rainfall distribution for the project area, for which data are held, is shown in Figure 1.

Figure 1 Rainfall Distribution - monthly, average for project area

3. Rainfall Zones

For planning soil reclamation and, later, agricultural inputs, it is very helpful - perhaps necessary - to have as much climatic data, including isohyets mapping information as possible. No such information was immediately available hence the existing rainfall data has been manipulated with the following outputs.

- A table showing rainfall zones
- A diagram showing rainfall in the various Kabupaten, and
- A simple map showing the location of these zones

Table 2 Rainfall Zones based on Long Term Precipitation

District No	Name	Location	Annual long term Pptn (mm)	Pptn in 1999	1999 as \% of average
11	Aceh Utara	N	1365	1318	97
		Average	$\mathbf{1 3 6 5}$	$\mathbf{1 3 1 8}$	$\mathbf{9 7}$
10	Bireuen	N	1613	1541	96
8	Aceh Besar	N	1668	1057	63
9	Pidie	N	1889	1807	96
		Average	$\mathbf{1 7 2 3}$	$\mathbf{1 4 6 8}$	$\mathbf{8 5}$
5		E	2222	3044	137
16	Aceh Timur	W	2649	2578	97
		Average	$\mathbf{2 4 3 6}$	$\mathbf{2 8 1 1}$	$\mathbf{1 1 7}$
1					
7	Simeulue	Aceh Barat	W	3000	ND
12	Aceh Barat Daya	W	3149	2809	ND
15	Nagan Raya	W	3303	2774	84
		Average	$\mathbf{3 2 0 3}$	$\mathbf{2 8 5 8}$	$\mathbf{8 7}$

It can be seen in Table 2 that groupings based on latitude and or geographical position do show variations with:

- The lowest rainfall, less than 1500 mm , in Aceh Utara which is at the eastern end of the N coast
- Average of around 1700 mm found along the N coast
- Average of around 2400 mm in the band with Aceh Jaya in the W and Aceh Timur in the E and at about the same latitude
- The lower west coast, including the island of Simeulue, having the highest - overall average of over 3200 mm

With slightly more data and knowledge of actual rainfall stations it would be possible to draw crude isohyets; this has not been attempted by ETESP.

Figure 2 Long Term Precipitation by District (Kabupaten)

It appears that rainfall decreases as one comes north and the pattern appear to be governed by latitude (how far north) and not location on the north or west coast. What has, in most previous reports, been referred to as the east coast is, in fact, largely a north coast! Only Aceh Timur should really be considered as lying on the east coast.

Figure 3 Districts (Kabupaten) in the Study and Long Term Precipitation

The original data as manipulated and used for the ETESP inception report has been found to be incorrect for Simeulue; long term annual rainfall was given as just over $1,000 \mathrm{~mm}$ per annum when it should be about $3,000 \mathrm{~mm}$ - this information being supplied by local Dinas staff from the area.

However, the lower figure should not be totally cast aside as it is possible that the data came from a rainfall station that is in a rain shadow - but for planning purposes the higher, 3000 mm , figure should be used.

4. Use of Rainfall Data

The monthly rainfall data have already been built into one of the main "reclamation" tools which is an MS Excel spreadsheet (Leaching Water Requirements.XLS) for calculating the depth (mm) and volume (cubic metres per hectare) required to leach soils of various textural class with salinised horizons of various depths.

APPENDIX 1 Original Data Manipulation Spreadsheet
Kabupaten Monthly Precipitation from Long Term Annual Rainfall

LT = Long Tem data source
This sheet shows Simeulue as having an annual rainfall of about 1130mm
The above is extracted from the MS Excel spreadsheet Kabupaten Precipitation.XLS and can be supplied on request.

Appendix 2 Updated Data Manipulation Spreadsheet

APPENDIX B RAINFALL DISTRIBUTION DIAGRAMS

